• Two meteorites are providing a detailed

    From ScienceDaily@1:317/3 to All on Mon Mar 27 22:30:20 2023
    Two meteorites are providing a detailed look into outer space

    Date:
    March 27, 2023
    Source:
    American Chemical Society
    Summary:
    If you've ever seen a shooting star, you might have seen a meteor
    on its way to Earth. Those that land here can be used to peek back
    in time, into the far corners of outer space or at the earliest
    building blocks of life. Scientists have conducted some of the most
    detailed analyses yet on the organic material of two meteorites.


    Facebook Twitter Pinterest LinkedIN Email
    FULL STORY ==========================================================================
    If you've ever seen a shooting star, you might have actually seen a
    meteor on its way to Earth. Those that land here are called meteorites
    and can be used to peek back in time, into the far corners of outer space
    or at the earliest building blocks of life. Today, scientists report
    some of the most detailed analyses yet of the organic material of two meteorites. They've identified tens of thousands of molecular "puzzle
    pieces," including a larger amount of oxygen atoms than they had expected.


    ==========================================================================
    The researchers will present their results at the spring meeting of the American Chemical Society (ACS).

    Previously, the team led by Alan Marshall, Ph.D., investigated complex
    mixtures of organic materials found on Earth, including petroleum. But
    now, they are turning their attention toward the skies -- or the things
    that have fallen from them. Their ultra-high resolution mass spectrometry
    (MS) technique is starting to reveal new information about the universe
    and could ultimately provide a window into the origin of life itself.

    "This analysis gives us an idea of what's out there, what we're going to
    run into as we move forward as a 'spacefaring' species," says Joseph Frye-Jones, a graduate student who is presenting the work at the
    meeting. Both Marshall and Frye-Jones are at Florida State University
    and the National High Magnetic Field Laboratory.

    Thousands of meteorites fall to Earth every year, but only a rare few are "carbonaceous chondrites," the category of space rock that contains the
    most organic, or carbon-containing, material. One of the most famous is
    the "Murchison" meteorite, which fell in Australia in 1969 and has been
    studied extensively since. A newer entry is the relatively unexplored
    "Aguas Zarcas," which fell in Costa Rica in 2019, bursting through
    back porches and even a doghouse as its pieces fell to the ground. By understanding the organic makeup of these meteorites, researchers can
    obtain information about where and when the rocks formed, and what they
    ran into on their journey through space.

    To make sense of the complicated jumble of molecules on the meteorites,
    the scientists turned to MS. This technique blasts a sample apart into
    tiny particles, then basically reports the mass of each one, represented
    as a peak.

    By analyzing the collection of peaks, or the spectrum, scientists can
    learn what was in the original sample. But in many cases, the resolution
    of the spectrum is only good enough to confirm the presence of a compound
    that was already presumed to be there, rather than providing information
    about unknown components.

    This is where Fourier-transform ion cyclotron resonance (FT-ICR)
    MS comes in, which is also known as "ultra-high resolution" MS. It
    can analyze incredibly complex mixtures with very high levels of
    resolution and accuracy. It's especially well suited for analyzing
    mixtures, like petroleum, or the complex organic material extracted
    from a meteorite. "With this instrument, we really have the resolution
    to look at everything in many kinds of samples," says Frye- Jones.

    The researchers extracted the organic material from samples of both the Murchison and Aguas Zarcas meteorites, then analyzed it with ultra-high resolution MS. Rather than analyzing only one specific class of molecules
    at a time, such as amino acids, they chose to look at all soluble organic material at once. This provided the team with more than 30,000 peaks for
    each meteorite to analyze, and over 60% of them could be given a unique molecular formula.

    Frye-Jones says these results represent the first analysis of this type
    on the Aguas Zarcas meteorite, and the highest-resolution analysis on
    the Murchison one. In fact, this team identified nearly twice as many
    molecular formulas as previously reported for the older meteorite.

    Once determined, the data were sorted into unique groups based on
    various characteristics, such as whether they included oxygen or sulfur,
    or whether they potentially contained a ring structure or double
    bonds. They were surprised to find a large amount of oxygen content
    among the compounds. "You don't think of oxygen-containing organics as
    being a big part of meteorites," explained Marshall.

    The researchers will next turn their attention to two far more precious samples: a few grams of lunar dust from the Apollo 12 and 14 missions of
    1969 and 1971, respectively. These samples predate Marshall's invention
    of FT-ICR MS in the early 1970s. Instrumentation has come a long way
    in the decades since and is now perfectly poised to analyze these
    powders. The team will soon compare their results from the meteorite
    analyses to the data they obtain from the lunar samples, hoping to learn
    more information about where the moon's surface came from. "Was it from meteorites? Solar radiation? We should be able to soon shed some light
    on that," says Marshall.

    The researchers acknowledge funding from the National Science Foundation Division of Chemistry and the State of Florida. They thank the Chicago
    Field Museum Robert A Pritzker Center for Meteoritics and Polar Studies
    and the Arizona State University Buseck Center of Meteorite Studies for
    the meteorite samples.

    * RELATED_TOPICS
    o Space_&_Time
    # Asteroids,_Comets_and_Meteors # Solar_Flare #
    Space_Missions # NASA # Space_Exploration # Moon #
    Sun # Solar_System
    * RELATED_TERMS
    o Meteor o Meteorite o Outer_space o Space_observatory
    o Space_elevator o Spitzer_space_telescope o Venus o
    Extraterrestrial_life

    ========================================================================== Story Source: Materials provided by American_Chemical_Society. Note:
    Content may be edited for style and length.


    ==========================================================================


    Link to news story: https://www.sciencedaily.com/releases/2023/03/230327114908.htm

    --- up 1 year, 4 weeks, 10 hours, 50 minutes
    * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)