• Proposed quantum device may succinctly r

    From ScienceDaily@1:317/3 to All on Wed Feb 15 21:30:34 2023
    Proposed quantum device may succinctly realize emergent particles such
    as the Fibonacci anyon

    Date:
    February 15, 2023
    Source:
    Purdue University
    Summary:
    Tenacity has taken a roadblock and turned it into a possible route
    to the development of quantum computing.


    Facebook Twitter Pinterest LinkedIN Email
    FULL STORY ==========================================================================
    Long before Dr. Jukka Vayrynen was an assistant professor at the Purdue Department of Physics and Astronomy, he was a post-doc investigating
    a theoretical model with emergent particles in a condensed matter
    setting. Once he arrived at Purdue, he intended to expand on the model, expecting it to be relatively easy. He gave the seemingly straightforward calculations to Guangjie Li, a graduate student working with Vayrynen,
    but the calculations yielded an unexpected result. These results were a surprising roadblock which nearly brought their research to a screeching
    halt. Team tenacity has taken this roadblock and turned it into a possible route to the development of quantum computing.


    ==========================================================================
    At the Aspen Center for Physics in Colorado, Vayrynen discussed this
    issue with a colleague from the Weizmann Institute of Science in Israel,
    Dr. Yuval Oreg, who helped circumvent the obstacle. The team used this
    new understanding of their calculations to propose a quantum device
    that could be tested experimentally to succinctly realize emergent
    particles such as the Fibonacci anyon. They have published their findings, "Multichannel topological Kondo effect," in Physical Review Letters on
    February 10, 2023.

    Condensed matter theory is a field of physics that studies, for example,
    the properties of electronic quantum systems, with applications to
    technologies such as superconductors, transistors, or quantum computing devices. One of the challenges in this field is understanding the quantum mechanical behavior of many electrons, also known as the "many-body
    problem." It is a problem because it can only be theoretically modeled in
    very limited cases. However, even in those limited cases, rich emergent phenomena such as collective excitations or fractionally charged emergent "quasi"-particles are known to emerge. These phenomena are a result of
    the complex interactions between electrons and can lead to the development
    of new materials and technologies.

    "In our paper, we propose a quantum device that is simple enough to
    be theoretically modeled and tested experimentally in the future,
    yet also complex enough to display non-trivial emergent particles,"
    says Vayrynen. "Our results indicate that the proposed device can
    realize an emergent particle called a Fibonacci anyon that can be used
    as a building block of a quantum computer. The device is therefore a
    promising candidate for the development of quantum computing technology."
    This discovery could be used in future quantum computers in a way that
    allows one to make them more resistant to decoherence, a.k.a. noise.

    According to their publication, the team introduced a physically motivated
    N- channel generalization of a topological Kondo model. Starting from the simplest case N = 2, they conjecture a stable intermediate coupling fixed
    point and evaluate the resulting low-temperature impurity entropy. The
    impurity entropy indicates that an emergent Fibonacci anyon can be
    realized in the N = 2 model.

    According to Li, "a Fibonacci anyon is an emergent particle with the
    property that as you add more particles to the system, the number
    of quantum states grows like the Fibonacci sequence, 1, 2, 3, 5, 8,
    etc. In our system, a small quantum device is connected to conduction
    electron leads which will overly screen the device and can result in an emergent Fibonacci anyon." The team also gives a number of predictions
    that could be experimentally tested in future quantum devices.

    "We evaluate the zero-temperature impurity entropy and conductance
    to obtain experimentally observable signatures of our results. In the
    large-N limit we evaluate the full cross over function describing the temperature-dependent conductance," says Vayrynen.

    This research is the first in a series that the Purdue team of Li and
    Vayrynen will work on. They collaborated with a senior scientist from Max Planck Institute for Solid State Research in Germany, Dr. Elio Ko"nig,
    and posted a related work, "Topological Symplectic Kondo Effect," in a
    preprint arXiv (2210.16614) on October 20, 2022.

    This research was based on work supported by the Quantum Science Center,
    a U.S.

    Department of Energy National Quantum Information Science Research Center headquartered at DOE's Oak Ridge National Laboratory. Dr. Yong Chen, the
    Karl Lark-Horovitz Professor of Physics and Astronomy and Professor of Electrical and Computer Engineering, is on the QSC's Governance Advisory
    Board, and Purdue is one of the center's core partners.

    * RELATED_TOPICS
    o Matter_&_Energy
    # Quantum_Physics # Physics # Quantum_Computing #
    Spintronics
    o Computers_&_Math
    # Quantum_Computers # Spintronics_Research #
    Computers_and_Internet # Hacking
    * RELATED_TERMS
    o Quantum_entanglement o Quantum_computer o
    Computing_power_everywhere o Grid_computing o Quantum_number
    o Computing o Quantum_tunnelling o Quantum_dot

    ========================================================================== Story Source: Materials provided by Purdue_University. Original written
    by Cheryl Pierce.

    Note: Content may be edited for style and length.


    ========================================================================== Journal Reference:
    1. Guangjie Li, Yuval Oreg, Jukka I. Va"yrynen. Multichannel
    Topological
    Kondo Effect. Physical Review Letters, 2023; 130 (6) DOI: 10.1103/
    PhysRevLett.130.066302 ==========================================================================

    Link to news story: https://www.sciencedaily.com/releases/2023/02/230215143640.htm

    --- up 50 weeks, 2 days, 10 hours, 50 minutes
    * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)