• Body's response to different strains of

    From ScienceDaily@1:317/3 to All on Sat Apr 16 22:30:42 2022
    Body's response to different strains of tuberculosis could affect
    transmission
    Study could shed light on disease spread, development of resistance

    Date:
    April 16, 2022
    Source:
    Rutgers University
    Summary:
    Two strains of the bacterium causing tuberculosis have only minor
    genetic differences but attack the lungs in completely different
    fashion, according to researchers.



    FULL STORY ==========================================================================
    Two strains of the bacterium causing tuberculosis have only minor
    genetic differences but attack the lungs in completely different fashion, according to Rutgers researchers.


    ==========================================================================
    The findings, published in the journal Nature Communications, could
    help break the cycle of rapid transmission of TB, the second-leading
    infectious killer in the world after COVID-19, according to the World
    Health Organization. The disease mechanisms uncovered in the study
    could also provide answers about why treatments work in some patients
    but not others.

    "These findings implicate strain differences as having an important
    effect on the response of lung alveolar macrophages and how tuberculosis manifests itself in the body and how it is transmitted," said study
    author Padmini Salgame, associate director of the Public Health Research Institute at Rutgers New Jersey Medical School. "We also believe it will
    inform anyone hoping to devise more effective treatments." To better understand transmission and how it relates to treatment outcomes, the researchers focused on the impact these two strains of Mycobacterium tuberculosis have on the lungs. Though the strains differ slightly in
    their gene sequences, one is regarded as "high transmission" because it
    spreads easily and the second as "low transmission" because it does not
    infect as readily. TB bacteria are spread through the air when persons
    with TB disease in their lungs cough, speak or even sing.

    Using strains identified in a Rutgers collaborative study with
    researchers at Nu'cleo de Doenc,as Infecciosas (NDI)in Brazil comparing
    "high transmission" and "low transmission" households of people with TB,
    the scientists studied the immune pathways that the pathogen triggered
    in the lungs of the infected mice.

    In mice infected with the high transmission strain, their lungs quickly
    formed clumps of immune cells known as granulomas that encased the
    invading bacteria, stopping development of a more virulent disease. In
    most cases, the granulomas broke down eventually, spilling their
    contents. Researchers believe that if the escaped bacteria are close
    enough to the bronchial airway, they could be expelled into the air as infectious aerosols.

    "By inducing granulomas with the potential to develop into cavitary
    lesions that aids bacterial escape into the airways, high transmission
    M. tuberculosis strains are poised for greater transmissibility," said
    Salgame, who is also a professor in the Department of Medicine.

    In mice infected with the low transmission strain, the invading bacteria
    were slow to activate the lung alveolar macrophages and ended up producing patches of inflammation within the lungs that did not allow the bacteria
    to escape into airways and allowed them to conglomerate and intensify
    the infection, Salgame said.

    The discovery of the different trajectories taken by the strains gives
    hope to new approaches to stopping transmission and treatment.

    "We have long known that some individuals with TB are more infectious than others," Salgame said. "However, until now, the mechanisms responsible
    for this variability in transmission between individuals with TB have not
    been well understood." Other Rutgers authors included Arianne Lovey,
    Sheetal Verma, Vaishnavi Kaipilyawar and Jerrold Ellner, all at the
    Center for Emerging Pathogens, and Seema Husain of The Genomics Center.


    ========================================================================== Story Source: Materials provided by Rutgers_University. Original written
    by Kitta MacPherson.

    Note: Content may be edited for style and length.


    ========================================================================== Journal Reference:
    1. Arianne Lovey, Sheetal Verma, Vaishnavi Kaipilyawar, Rodrigo
    Ribeiro-
    Rodrigues, Seema Husain, Moises Palaci, Reynaldo Dietze, Shuyi Ma,
    Robert D. Morrison, David. R. Sherman, Jerrold J. Ellner, Padmini
    Salgame. Early alveolar macrophage response and IL-1R-dependent
    T cell priming determine transmissibility of Mycobacterium
    tuberculosis strains. Nature Communications, 2022; 13 (1) DOI:
    10.1038/s41467-022-28506-2 ==========================================================================

    Link to news story: https://www.sciencedaily.com/releases/2022/04/220416161124.htm

    --- up 6 weeks, 5 days, 10 hours, 51 minutes
    * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)