• Deserts 'breathe' water vapor, study sho

    From ScienceDaily@1:317/3 to All on Wed Mar 30 22:30:46 2022
    Deserts 'breathe' water vapor, study shows

    Date:
    March 30, 2022
    Source:
    Cornell University
    Summary:
    Deserts may seem lifeless and inert, but they are very much
    alive. Sand dunes, in particular, grow and move -- and according
    to a decades long research project, they also 'breathe' humid air.



    FULL STORY ========================================================================== Deserts may seem lifeless and inert, but they are very much alive. Sand
    dunes, in particular, grow and move -- and according to a decades long
    research project, they also breathe humid air.


    ==========================================================================
    The findings show for the first time how water vapor penetrates powders
    and grains, and could have wide-ranging applications far beyond the
    desert -- in pharmaceutical research, agriculture and food processing,
    as well as planetary exploration.

    The team's paper published in the Journal of Geophysical Research-Earth Surface.

    Wanting to measure matter with greater sensitivity, lead author Michel
    Louge, professor of mechanical and aerospace engineering at Cornell
    University, developed a new form of instrumentation called capacitance
    probes, which use multiple sensors to record everything from solid concentration to velocity to water content, all with unprecedented
    spatial resolution.

    In the early 2000s, Louge began collaborating with Ahmed Ould el-Moctar
    from University of Nantes, France, to use the probes to study the
    moisture content in sand dunes to better understand the process by which agricultural lands turn to desert -- an interest that has only become
    more urgent with the rise of global climate change.

    The probe eventually revealed just how porous sand is, with a tiny amount
    of air seeping through it. Previous research hinted this type of seepage existed in sand dunes, but no one had been able to prove it until now.



    ==========================================================================
    "The wind flows over the dune and as a result creates imbalances in the
    local pressure, which literally forces air to go into the sand and out
    of the sand.

    So, the sand is breathing, like an organism breathes," Louge said.

    That "breathing" is what allows microbes to persist deep inside hyper-arid
    sand dunes, despite the high temperature. For much of the last decade,
    Louge has been collaborating with Anthony Hay, associate professor of microbiology at Cornell, to study how microbes can help stabilize the
    dunes and prevent them from encroaching into roads and infrastructure.

    Louge and his team also determined that desert surfaces exchange less
    moisture with the atmosphere than expected, and that water evaporation
    from individual sand grains behaves like a slow chemical reaction.

    The bulk of their data was gathered in 2011, but it still took Louge
    and his collaborators another decade to make sense of some of the
    findings, such as identifying disturbances at the surface level that
    force evanescent, or nonlinear, waves of humidity to propagate downward
    through the dunes very quickly.

    The researchers anticipate their probe will have a number of applications
    - - from studying the way soils imbibe or drain water in agriculture,
    to calibrating satellite observations over deserts, to exploring extraterrestrial environments that may hold trace amounts of water. That wouldn't be the first time Louge's research made its way into space.

    But perhaps the most immediate application is the detection of
    moisture contamination in pharmaceuticals. Since 2018, Louge has been collaborating with Merck to use the probes in continuous manufacturing,
    which is viewed as a faster, more efficient and less expensive system
    than batch manufacturing.

    The research was supported by the Qatar Foundation.


    ========================================================================== Story Source: Materials provided by Cornell_University. Original written
    by David Nutt, courtesy of the Cornell Chronicle. Note: Content may be
    edited for style and length.


    ========================================================================== Journal Reference:
    1. M. Y. Louge, A. Valance, J. Xu, A. Ould el‐Moctar,
    P. Chasle. Water
    vapor transport across an arid sand surface ‐ non‐linear
    thermal coupling, wind‐driven pore advection, subsurface
    waves, and exchange with the atmospheric boundary layer. Journal of
    Geophysical Research: Earth Surface, 2022; DOI: 10.1029/2021JF006490 ==========================================================================

    Link to news story: https://www.sciencedaily.com/releases/2022/03/220330121414.htm

    --- up 4 weeks, 2 days, 10 hours, 51 minutes
    * Origin: -=> Castle Rock BBS <=- Now Husky HPT Powered! (1:317/3)